
RARIMO: A USER-OWNED SOCIAL PROTOCOL
WHITEPAPER, V3

April 9, 2024

ABSTRACT

Rarimo is a privacy-first social protocol that seamlessly combines various
identity standards and allows the formation of a private yet verifiable history of
their use and relations. This paper aims to describe the different components
of the Rarimo protocol, which includes: 1. the core layer responsible for
propagating identity states across networks; 2. protocols for creating identity
artifacts such as Verifiable Credentials and self-issued credentials based on
existing identity documents; 3. the mechanism of identity management by the
owner and creating a private graph of identity actions and relations.

1 Introduction

Bitcoin empowered individuals with a decentralized currency. Ethereum enabled the decentral-
ization of financial applications. The next frontier in the web3 realm is developing a reliable
social protocol, which must meet several criteria:

1. Control. Users should have exclusive authority over managing their identity and all
connected attributes. Optionally, certain processes (e.g., identity recovery) can involve
trusted parties for additional protection, but only at the user’s request.

2. Privacy. Sensitive data must remain inaccessible to third parties. The user alone should
decide what information to share, when, and with whom. While some protocols may
require verifying the user’s uniqueness, this should not compromise the privacy of
personal information.

3. Compatibility. The digital identity solution should support various industry standards,
such as W3C DID credentials, soulbound tokens (SBTs), ENS records, etc. Each of
these identity formats offers unique advantages; therefore, the social protocol must
allow interoperability among them. Additionally, it should support both off-chain and
on-chain verification methods.

2 Problem Statement

The current landscape of digital identity management, particularly through the use of NFTs
and SBT tokens, faces significant challenges in maintaining ownership privacy and ensuring
untraceability for its users. These tokens, while useful in representing ownership and attributes,
fall short in providing comprehensive control and privacy guarantees. Other identity solutions
(Verified credentials, proofs) offer a means to create accounts and associate attributes privately,
yet they struggle with mapping inter-account relationships, a key aspect of social interactions.

We believe the social protocol must allow for private control of identity. At the same time, we
hold that the most significant aspect of identity is its relationships with other identities, including
bidirectional attestations, shared communion, and participation, among others. However, all of
these should be also hidden by default and disclosed only upon request.

Different standards and their verification methods create big challenges in making digital social
interactions that can scale easily and work seamlessly. This is because digital identities are

Rarimo. User-owned social protocol WHITEPAPER

complex, involving different types of digital attributes, each with its own way of being managed
and structured.

• Account addresses, which denote asset ownership and balance.
• NFT and SBT tokens signifying memberships and attributes.
• SSI states and Verifiable Credentials representing statements.
• Web services which bridge web3 applications with the traditional web.
• Document-derived artifacts representing legal documents to be integrated and utilized

within web3.

From these separately evolving building blocks, three primary challenges emerge, complicating
the landscape:

• Identity fragmentation and lack of interoperability: This fragmentation makes
it difficult for dApps from accurately verifying users from different ecosystems and
obstructs the unification of different identity components across different chains.

• Privacy concerns: Maintaining a reasonable level of anonymity or managing sensitive
data on-chain proves difficult. Currently, only protocols incorporating zero-knowledge
proofs effectively address these privacy issues.

• Complex identity verification algorithms: The challenge of building a universal
identity query that covers all potential scenarios complicates identity verification. Al-
though verification methods are robust, a standardized API is essential for developing
applications that can navigate this complexity.

3 Preliminaries

3.1 Hashing Functions

Let {0, 1} be a binary element and Fp be a finite field of prime order p. We introduce two
hashing functions: Hn and Hzk. Hn is a regular cryptographic one-way function Hn : {0, 1}∗ →
{0, 1}n that sends the string of an arbitrary length {0, 1}∗ to the string of fixed size n, while
Hzk : {0, 1}∗ → Fm

p is the zk-friendly hash function, which works natively with the field Fp.
Usually, m is set to 1 to simplify the arithmetic circuit.

Formally, the hashing function is a deterministic one-way 2nd-preimage-resistant function.
The primary, simply explained reason for using a hashing function is the following: based
on y = H(x), it is impossible to deduce x, meaning y can be a public parameter (preimage
resistance). Also, having a random message m1, it is computationally impossible to find m2 such
that H(m1) = H(m2). These two properties would come in handy in the subsequent sections.

3.2 Binary Tree

Let TH be a binary tree instance with the height H and elements Ti,j ∈ {0, 1}n, where i ∈
{0, . . . ,H} and j ∈ {0, . . . , 2H−i−1 − 1}. Path(T0,j , Troot) is a Merkle path for the leaf T0,j

for the tree TH with the root TH,0. We will use the notation Root(L1, . . . , Lm) as a function of
calculating Merkle Root for a particular set of leaves (L1, . . . , Lm).

3.3 Zero-knowledge Proof

Further, since the protocol uses zero-knowledge proofs, we formally define it. Zero-knowledge
proof (ZKP) is a two-party protocol running between a prover and a verifier for proving a
statement without revealing information behind the statement. Each zero-knowledge protocol
satisfies three properties: completeness, soundness, and zero-knowledge.

The zero-knowledge protocol consists of the following functions:

• Setup(1λ) – given security parameter λ ∈ N, gives the public parameters ⟨pp, vp⟩ for
prover and verifier, respectively.

2

Rarimo. User-owned social protocol WHITEPAPER

• Prove(pp,w,x) – given prover parameters pp, private info (witness) w, and public
statement x, generates a short proof π.

• Verify(vp,x, π) – given public parameters vp, verifies whether for the proof π exists
some witness w such that ⟨w,x⟩ ∈ R whereR is a relation.

When defining the zero-knowledge proof, we will use the notation below. Here, pub_signals
stands for public signals, priv_signals for private signals and circuit_logic is where the main
verification logic is specified.∣∣∣∣∣∣∣∣∣∣∣

pub_signals:
signal1, signal2, . . . , signaln

priv_signals:
signaln+1, signaln+2, . . . , signalm

circuit_logic:
cond1 ∧ cond2 ∧ · · · ∧ condk

∣∣∣∣∣∣∣∣∣∣∣
(1)

Additionally, we further use the notation a← b, which reads as “variable a gets the value of b”,
and a

!
== b as “we require a to be equal to b”.

3.4 Certificates and Signatures

Let Cert(pk) be a valid certificate that belongs to the passport issuer with the public key pk. We
further use C to denote the set of all valid certificates. When writing pk ∈ C, we mean that “the
certificate for public key pk is valid”.

We also use the signature scheme, consisting of the following functions:

• Sign(m, sk) – sign message m ∈M using the secret key sk and output the signature σ.
• SigVerify(σ, pk,m) – verifies that signing m with a secret key, corresponding to pk,

produces the signature σ. Outputs accept if the signature is correct, and reject otherwise.

4 Rarimo Core

The Rarimo Core is a decentralized blockchain-based system designed for timestamping, storing,
and updating identity states and social relations that other networks and protocols can use.

Rarimo Core is maintained by a set of validators that achieve consensus using the BFT-based
algorithm [Buc16]. It assumes that for consensus reaching (with fault tolerance), the maximum
amount of faulty validators f can be f =

⌊
n−1
3

⌋
, where n is the total number of nodes.

Rarimo uses a delegated Proof-of-Stake mechanism for validator selection. Any user can propose
themselves as a validator; if other users trust the delegate, they can stake their tokens for them to
become a validator. The delegates with the top staked balances are selected as validators.

Additionally, Rarimo Core allows the use and propagation of identity states over connected
networks using protocol oracles (selected, governed, and rewarded by the Rarimo DAO). It also
increases the decentralization of fetching identity data from external networks (if identity events
did not originate on the Rarimo chain).

4.1 Roles and Actors

The Rarimo protocol supports several roles, including the identity owner, issuer, verifier, validator,
and signer.

• The Identity owner is the user who collects identity artifacts such as ownership and
membership statements. The mechanism for controlling credentials depends on the type
of credential, whether it is a W3C credential, self-issued credential, SBT, or another
type.

• The Issuer is the party that can create a digital claim with a statement about the identity
owner. For certain types of identity artifacts, such as document-based identities, a

3

Rarimo. User-owned social protocol WHITEPAPER

Field Purpose
Block header The structure that includes all metadata needed for block validation
Data (transaction list) The list of transactions that are confirmed in this block
Evidence The threshold ECDSA[GG20] and EdDSA[MBS23] signatures of

the current validators’ quorum

Table 1: Rarimo block structure.

decentralized issuer may be used as a smart contract that verifies proofs and updates
their state accordingly. Sometimes, we will use the “identity provider” term for the
same role.

• The Verifier is the off-chain or on-chain application that verifies the proof’s correctness
(connected to an identity statement). For that, the verifier retrieves states from the
Rarimo protocol.

• The Validator is responsible for maintaining the protocol and reaching a consensus
with other validators regarding the acceptance of new blocks and transactions.

• Finally, the Signer is a participant who can bring data to or from Rarimo Core and
co-sign this action with a threshold digital signature.

Furthermore, we will introduce two key roles: the Initiator, who initiates a transaction that
triggers a process (such as sending a cross-chain message), and the Prover, who provides
evidence of the validity of an action (for example, verifying that Rarimo validators have endorsed
a block with a specific state).

4.2 Quorum-driven State of Rarimo Core

As mentioned, Rarimo Core uses blockchain technology to maintain a history of transactions
associated with the protocol when sending and confirming transactions. These mechanisms
are essential for retrieving the complete history and origin of the unique object that navigates
through web3. The structure of blocks within the blockchain is represented as follows (Table 1).

Therefore, when a transaction needs to be added to the blockchain, the proposer (the validator
who initially forms the block and shares it with all other validators) incorporates this transaction
into the block (along with other transactions), signs it, and then broadcasts it across the network.
The validator who places their signature on the block verifies that all included transactions are
correct. Following a consensus round (where all other validators agree to add the transaction),
the block is incorporated into the blockchain, and the system’s state is updated.

Using the provided block structure, the prover can create a witness about including the particular
transaction into the block (through providing the Merkle path).

4.3 Cross-chain Messaging Protocol

The main flow of cross-chain message transfer happens in 4 steps (Figure 1):

1. The user creates an action and sends it to the Rarimo Contract. An alternative case is
when some Oracle services track specific events on defined contracts and react to them,
sending appropriate messages to the Rarimo Core.

2. Validators add a transaction to the Rarimo Core (by consensus reaching) and generate a
time-stamped witness of its existence.

3. Prover receives the witness from the Rarimo Core and provides it to the Rarimo Contract
on the destination chain. The prover means any relayer who can call the appropriate
smart contract method.

4. The recipient (dApp) updates their state depending on the received message.

4

Rarimo. User-owned social protocol WHITEPAPER

Rarimo Core

Original chain

Destination chain

Message
initiator

dApp
contract

Initiate
message

sending by

the
calling
method

Rarimo
Contract

Oracle

Witness creation

Prover

Transfers event to Rarimo Core

Takes the witness

Rarimo
Contract

Proves the
message
existingdApp

contract

Performs
action

Figure 1: Cross-chain messaging flow.

Algorithm 1 Client Cℓ performs a cross-chain transaction txA→B to transfer the message from
system A to system B. SCA is a bridge smart contract in system A, SCB is a smart contract in B.
P is a block proposer, and V is the set of current validators of the Rarimo Core (CORE). txmsg
is a transaction that includes the corresponding message. txw→B – a transaction that provides
needed witness w for SCB initiating.

Step 0. Crosschain transaction.
Let accA – account of the user in system A, accB – account of the receiver in system B.
Step 1. Message sending
1. Cℓ sends the txmsg: accA → SCA to initiate a witness transferring.
2. P parses all SCA events for receiving a set of transactions Ltx = {tx(i)msg} from accX to
SCA. P verifies each txmsg ∈ Ltx and forms a list of valid transactions Lvalid ⊂ Ltx.
3. For each txmsg ∈ Lvalid:

3.1. P calculates data_hash← Root(Lvalid).
3.2. P forms a block header ⟨prev_hash,Cert(V), data_hash⟩
3.3. P forms a block ⟨h,Lvalid, σP⟩ with header h and signature σP .

4. P propagates the block with a set of validators V .
5. V performs validation of the received block and adds the corresponding evidence of its
correctness Cert(V).
6. So, the final block has the structure ⟨h,Lvalid,Cert(V)⟩ with a header h.
Step 2. Message receiving
1. Cℓ parses CORE for receiving the block with txmsg : accA → SCA. This transaction can be
parsed by a separate service and returned to Cℓ.
2. Cℓ received the block ⟨h,Lvalid,Cert(V)⟩ and takes a header, only required transaction and
evidence.
3. For txmsg, Cℓ generates the Merkle Branch (auth0, auth1, . . . , authn−1) – witness that
particular txmsg included to the block
4. Cℓ forms txw→B and sends it to SCB

5. SCB performs the following checks:
5.1 txmsg /∈ Lvalid stored by the SCB

5.2 Cert(V) is valid for block.
5.3 txmsg ∈ h via verification (auth0, auth1, . . . , authn−1)

6. SCB sends the transaction txmsg : accSCB
→ accB to transfer the final message.

5

Rarimo. User-owned social protocol WHITEPAPER

5 Social Protocol

Rarimo supports EVM-compatible smart contracts that allow contributors to build sub-protocols
using a cross-chain messaging layer. The primary sub-protocol built on top is the zero-knowledge
identity, based on the Iden3 standard[Ide] and passport-derived profiles.

The Iden3 protocol is suitable for receiving identity statements in a Verifiable Credential format.
Rarimo allows identity providers to publish only state hashes into the Rarimo blockchain. After
propagating to connected networks, DApps can use the mentioned states to verify various identity
statements. This flow presumes the creation of the identity claims of the user by the identity
provider and pushing its state in the Rarimo Core or connected blockchains. Periodically or
upon request, identity states are broadcast across connected networks, making them accessible to
end-users directly on the requested chains.

Rarimo’s cross-chain messaging and hub architecture allow the synchronization of these states
between all connected chains quickly and with lower fees. This enables identities published on
Rarimo to be used on any chain.

Passport-derived profiles enable users to set up an identity solely with their government-issued
documents without needing a third-party issuer. Using this functionality, users can verify the
authenticity of their documents without disclosing their personal information, thereby creating a
profile linked to the specified data. Once the identity profile is established, users can demonstrate
the validity of certain information within their documents and ensure the uniqueness of the
identity for the application in use.

Passport-derived profiles are also presumed to build the tree, the state of which can be broadcast
over the Rarimo network. These tree states allow for the organization of deterministic proof of
user uniqueness with additional eligibility proofs. From the cryptographic perspective, passport-
derived profiles are compatible with the Iden3 protocol (duplicate keys and signatures can be
used). Users can create passport-derived profiles and connect additional verifiable credentials or
attributes. Additionally, identity providers can track passport revocation events and automatically
revoke/reissue Verifiable Credentials.

5.1 Verifiable Credentials Infrastructure

As mentioned, identity providers can create Verifiable Credentials for a user’s identity. Rarimo
Core or any connected network could be used as a genesis chain. According to the Iden3 protocol,
the state is represented as Figure 2.

The flow of issuing the Verifiable Credentials and using it cross-chain can be seen in Algorigm 2.

This concept shows the universality of digital identity use. As highlighted at the outset of this
whitepaper, the type of identity artifacts extends beyond the VCs, NFTs/SBTs, or reputational
systems. The Rarimo method allows to work with each component through a unified process,
ensuring that integration is easy and seamless.

5.2 Passport-derived Profiles

5.2.1 Creating a Profile in the Rarimo Ecosystem

To receive the profile connected to the passport, the user performs the following actions:

1. The user creates the request to Rarimo to create an account (identity profile).
(a) The user generates the keypair ⟨pk, sk⟩ for identity management and calculates the

blinder β ← Hzk(sk).
(b) The user signs pk with the passport signature σpass ← Sign(pk, skpass) by us-

ing passport active authentication mechanism and providing Hzk(pk)[: 64] as a
challenge.

(c) The user generates proof π that pkpass is a public key belonging to the passport
(signed by some key from the ICAO list, without revealing who exactly is the
issuer authority of the passport) and that identity management pk is signed by the
passport skpass. The circuit then calculates dcommit ← Hzk(d1 ∥ β).

6

Rarimo. User-owned social protocol WHITEPAPER

Identity
state

Claim Tree Root Revocation Tree Root Roots Tree Root

Blockchain 
zone

TreeTreeTree

...
Claim Tree

Root...
Revocation

Nonce, VersionClaim  
1

Claim  
2

... Claim  
n

Public 
zone

Index
Hash

Value
Hash

Index 0 Index 1 Index 2 Index 3 Value 0 Value 1 Value 2 Value 3

schema,
flags,

version

identity,
that

receives
the

claim

data data

revocation,
nonce,

expiration
date

data data data

Private 
Zone

Figure 2: Iden3 architecture.

(d) The user submits a profile creation transaction with the following data:
i. pk

ii. pkpass
iii. σpass

iv. π ← Prove(pp, pkpass ∼ passport ∧ d1 ∼ passport ∧ pkiss ∈ C)

2. This way, a specific passport is linked with identity keys (pk :: pkpass) at the Rarimo
level (tree leaf in a Sparse Merkle Tree TID) (Figure 3).

(a) Leaf position: IDpos ← Hzk(pk ∥ pkpass)

(b) Leaf value: v ← Hzk(IDpos, dcommit)

The user can try to create several profiles using different pk for the same passport (and, conse-
quently, the same pkpass). In this case, Rarimo will reject the request until the current identity
key is revoked, which can only be done by the passport owner.

5.2.2 Profile Revocation

The passport owner can revoke the current pk associated with the passport.

1. The user creates a request to revoke the pk key:

(a) The user signs the current pk using the passport σ′
pass ← Sign(pk, skpass) (note that

σ′
pass ̸= σpass).

2. The user submits a profile key revocation transaction with the following data:

7

Rarimo. User-owned social protocol WHITEPAPER

Algorithm 2 Issuance of the VC and usage it cross-chain
Step 0. VC issuance
1. The identity provider P issues identity owner O a verifiable credential VC (claim) on the
operational chain and updates the identity state SP . The identity provider can add an arbitrary
number of other identities O1,O2, . . . ,On to the state without updating its cross-chain after
each new identity (it allows reduced costs and state transitions allow the verification of the
correctness of the new state).
2. If O urgently requires her identity on the external chain, she can call Rarimo Core and
update appropriate T with a state S. Otherwise, they can wait for the Identity provider or
Oracles to do that.
Step 1. Updating the state in Rarimo Core
1. The block proposer P adds this transaction (with the updated state S) to the block B, signs
it with σP , and transfers it to other validators. If more than 2

3 of current validators have signed
the block (if the Cert(V) is valid), it is added to the blockchain and is irreversible.
2. Confirmation of the block by the Cert(V) automatically initiates the creation of the witness
needed by the message client.
3. The Prover listens to events in the Rarimo Core and, in the case of needed block confirmation,
receives the needed witness. The witness is a data structure that includes:

3.1 tx′state
3.2 The header h of the block in which the transaction was added
3.3 Evidence Cert(V) of the block in which the transaction was added
3.4 Path(tx′state,Root(T))

Step 2. Verification
1. The Prover provides the witness w to the Rarimo Contract, and the contract performs the
following verification:

1.1 w /∈ Wprevious, whereWprevious is the list of previously used witnesses.
1.2 Cert(V) is valid.
1.3 Root(T) is in block B.
1.4 S → S′ is a valid state transition.

2. Then the user can prove her claim ownership directly on the destination chain.

User

— keypair for identity management
— key for DG1 blinding
— passport keypair

Proof:

passport is valid

Rarimo

Verification

 ID Merkle Tree

......

... REL_pos

Figure 3: The process of creating an identity profile.

8

Rarimo. User-owned social protocol WHITEPAPER

Rarimo

Verification

ID Merkle Tree

......

...

REVOKED
User

...

Figure 4: The process of revocation of the profile.

(a) pkpass

(b) pk

(c) σ′
pass

3. Identity contract calculates the tree position as IDpos ← Hzk(pk ∥ pkpass) and verifies

the signature SigVerify(σ′
pass, pkpass, pk)

!
== accept

4. If the signature is correct, the TID is updated with IDpos = Revoked (see Figure 4).

The user can customize the profile revocation logic. For example, the user can set a revoking
event with another public key from a predefined set {pk1, pk2...pkn} signs the revocation request
(or threshold quorum of them).

The user can also turn off key revocation. Then, it can only be revoked by creating a new profile
with the same keys.

5.2.3 Reissuance

The user can redefine a profile with a new identity key (separately or with the revocation
procedure). For this:

1. The user generates a new key pair ⟨pk′, sk′⟩

2. The user signs pk′ using the passport σpass ← Sign(pk′, skpass)

3. The user submits a profile update transaction with the following data:

(a) pk′

(b) pkpass

(c) σpass

4. The profile is updated at the Rarimo layer (pk′ :: pkpass)

5. The TID is updated (Figure 5):

(a) Set Revoked constant to the Hzk(pk ∥ pkpass) tree position.

(b) Set Hzk(IDpos ∥ d′commit) to the ID′
pos = Hzk(pk

′ ∥ pkpass) tree position.

9

Rarimo. User-owned social protocol WHITEPAPER

Rarimo

Verification

ID Merkle Tree

......

...

REVOKEDUser

...

Figure 5: The process of updating an identity profile.

5.2.4 Auth Proof with Selected Data Disclosure

At a specific time, the user can prove that he has a registered profile and data set connected to the
corresponding passport. For example, there is an event E with the identifier IDE . Additionally
to the proof of the existence in the TID the user wants to prove:

1. Their citizenship is included in the list of allowed.
2. Expiration date of their passport is within some time bounds (τ−exp, τ

+
exp).

3. The date of their birth is within some time bounds (τ−birth, τ
+
birth).

4. Their sex is equal to F value (data is disclosed)

The user generates the following proof (Figure 6). Below, ν denotes the nullifier:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pub_signals:
ν ← H(sk ∥ IDE)

Root(TID), IDE ,Sel, (τ
−
exp, τ

+
exp), (τ

−
birth, τ

+
birth),Mcit, F

∗
pass,AAflag

priv_signals:
sk, pkpass, d1

σpass ← Sign(IDE , skpass)
circuit_logic:
pk ∈ TID :

IDpos
!
== Hzk(pk ∥ pkpass)∧

IDpos.value
!
== Hzk(Hzk(pk ∥ pkpass) ∥ Hzk(d1 ∥ β))

Hzk(sk ∥ IDE)
!
== ν∧

Select(Selector, d1)
!
== F ∗

pass∧
(d1.Cit ∧Mcit)

!
== 0∧

d1.exp ∈ (τ−exp, τ
+
exp) ∧ d1.birth ∈ (τ−birth, τ

+
birth)

if AAflag = 0, requireSigVerify(σpass, IDE , pkpass)
!
== accept

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

To ensure the user’s uniqueness, it is necessary to fix Root(TID). To generate proof, a request
should be made to the historical state of the Identity Smart Contract. It is important to note that
this contract cannot be frozen for a specific event, as it provides a global state and should always
be available for state updates. If the user wants to take another action using the same identity
key, the nullifier will be matched, and the transaction will be reversed.

Selector Sel is needed to disclose personal information from a passport selectively. Each private
data signal is multiplied by a corresponding Sel bit. If the bit is 0, data is blinded by multiplying
it with 0. If the bit is 1, data is sent to the output signal without modifications.

10

Rarimo. User-owned social protocol WHITEPAPER

User

Rarimo

ID Merkle Tree

......

... ...

Hello, I'm and dApp that
give 10 Tokens to each

unique passport issued by
UA gov for adult

verification

Application

$$$

Auth Proof

Proving  
Params

Figure 6: The process of proving the identity ownership.

Figure 7: An example of selector functioning.

By applying this algorithm, we can use the same circuit for any revealed and unrevealed personal
data set.

6 Private Social Graph

The mentioned architecture allows the creation of several types of actions privately but with the
ability to prove them in the future (even recursively). Examples of such actions are the following:

• Prove the credential and attestation ownership at a particular time (and continuously).

• Prove that some data in the identifier passed the verification defined by a particular
dApp or verifier.

• Give/receive attestation to another identity owner (of the whole identity or some param-
eter).

• Prove that a particular user initiated some actions.

• Prove that specific actions were initiated by the set of identities (group of people), and
all/some/at least one satisfies defined requirements.

• Prove that some claims and/or passports are connected to one identity.

• Prove that the user is(not) included in specific lists or groups.

• Prove that the sent/received attestation came to/from the identity or service that satisfies
some criteria without revealing the identity owner.

11

Rarimo. User-owned social protocol WHITEPAPER

ZK Proof:
18+, has 174 friends, signed the petition X,
in Harry Potter fan club, inventor of 7 patents,
was with girlfriend on the concert 6 years ago,
not a USA resident, NFT owner, likes revolutions...

What you can prove

What everyone sees

Figure 8: Proofs over the private metagraph.

All these actions are invisible to the public until the owner decides to prove them.

6.1 Identity Profile Liveness

Here is an example that allows users to prove the ownership of a particular passport over time.
Imagine a set of Trees T1, T2, T3, . . . , Tm, each indicating the authentication tree in the particular
time range (each tree represents a particular month, for example). Each Tree has an identifier
ID1, ID2, . . . , IDm, representing a large 256-bit number. Trees are self-manageable, meaning
users can update them with their identity artifacts (no trusted party is required).

By default, each Ti, i ∈ {1, . . . ,m} is zero, meaning all its leaves are equal to 0. Then, it will be
updated with specific commitments representing the ownership of passports.

12

Rarimo. User-owned social protocol WHITEPAPER

...

Figure 9: Collecting signature samples in time trees.

When the user wants to update the tree, they must:

1. Sign the ID with their passport key σpass ← Sign(ID, skpass).
2. Create the commitment com← H(σpass, pkpass, ν).
3. Create a proof: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pub_signals:
com, ID

priv_signals:
σpass, pkpass, ν, σiss, C, SOD

circuit_logic:
H(σpass, pkpass, ν)

!
== com∧

SigVer(σpass, ID, pkpass)
!
== 0∧

pkiss ∈ C ∧ pkpass ∈ SOD∧
SigVerify(σiss, SOD, pkiss)

!
== 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3)

4. Send the transaction with an update on the tree with com.

In such a way, the user leaves the proofs bonded to the same passport public key. These proofs
are designed to prove that passports use active authentication constantly within the corresponding
time frame.

If the user needs to prove they have used the AA method in the sequence of proofs, they can
create the following proof:∣∣∣∣∣∣∣∣∣∣∣∣

pub_signals:
{Ti}ki=1

priv_signals:
pkpass, {comi}ki=1, {Path(comi, T (i)

root)}ki=1, {σi}ki=1, ν
circuit_logic:

∀i : comi ∈ Ti ∧ SigVerify(σi, IDi, pkpass)
!
== accept

∣∣∣∣∣∣∣∣∣∣∣∣
(4)

This approach doesn’t allow the creation of millions of new backdated passports and attaching
them to profiles with a high reputation level (only owners of passports confirmed over time
should be eligible or should have more reputation power than fresh passports). The verifier
application can set the time threshold of the reputation-calculating approach that decreases the
impact of freshly printed documents on the final use case.

13

Rarimo. User-owned social protocol WHITEPAPER

RL Merkle Tree

......

...

 ID Merkle Tree

......

... REL_pos’ ... REL_pos

...

...

Reissue:

Figure 10: The process of building rate limiting tree.

6.2 Attestations

The same commitments and verification methods could be applied to other social artifacts.
Suppose the user wants to prove they participated in several events with another person. In that
case, they can put such attestations in event trees and prove the connection with a particular
identity in the future. Each credential, action, and property can be proved the same way.

6.3 Rate Limiting Trees

Rarimo social protocol allows users to generate anonymous proofs based on their identity profile
(and connected attributes). The problem arises when some protocols want to ensure users can
interact with it only once.

The naive solution would be publishing a commitment to the unique user’s credentials (for
instance, the public key of the passport), but this would expose users to a dictionary attack. An
attacker with a set of known credential data could trace the user’s and protocol interaction.

We propose another way to solve this problem with a compact security gadget. The procedure
of creating the identity profile allows the tracking of new identity public keys and adding them
to a Rate-Limiting Sparse Merkle Tree TRL. The organization that requires limitations for user
operation can build this tree off-chain (only for time bounds it’s interested in).

The rate-limiting tree functioning is pretty simple. Based on time (block height), the service that
requires the tree fetches all events connected with updating identity profiles and builds the Tree
with the new pk (new public keys connected to identity).

To operate with the application, the user should generate a non-inclusion proof (that they have
not reissued the identity). Users cannot generate appropriate proofs if they change their identity
after tracking the starting point. ∣∣∣∣∣∣∣∣∣∣∣

pub_signals :
TRL

priv_signals :
pk

circuit_logic :
pk /∈ TRL

∣∣∣∣∣∣∣∣∣∣∣
(5)

This proof is an extension to action proof (it could be used with joining to initiator’s pk within
proof construction).

6.4 Challenges

• Creating user-oriented queries for working with the private graph (the user can recur-
sively prove some relations or actions hidden in the graph)

• Creating queries that can calculate some results based on the graph but without revealing
particular events.

14

Rarimo. User-owned social protocol WHITEPAPER

7 Utilities of the Token

The Rarimo protocol has its internal utility token – RMO, the main utilities of which are
as follows: (1) payment of transaction fees, (2) governance within the DAO of the Rarimo
protocol, (3) selection of validators of the Rarimo Core, and (4) rewards to oracles and signers
for transferring data cross-chain.

7.1 Fees

The primary utility of the RMO token is to pay transaction fees within the Rarimo protocol.
Transaction fees cover operations involving the transfer of identity states, tokens, and messages
across connected networks.

7.2 Governance

RMO tokens will be used as a governance tool for the DAO of the Rarimo protocol.

Any RMO token holder can participate in Rarimo’s governance process. From time to time, it is
expected that the community of the Rarimo protocol will adopt and implement a governance
policy, acceptable for the Rarimo DAO, but, in general, it is suggested that the proposal’s creator
must block a number of the RMO tokens, prescribed in the governance policy, to submit a
proposal. The blocked tokens will be burned if the other participants consider the proposal
fraudulent. After that, a voting round will begin, the duration of which may be approved in the
governance policy. If a certain amount of all voters support the proposal (the exact amount should
be reflected in the governance policy), it will be deemed accepted, and certain requirements
concerning the quorum, which may be prescribed in the governance policy, must be met to
update the protocol. The proposal’s creator will receive a reward, the amount of which will be
determined by the protocol. If the proposal is not accepted and users do not consider it fraudulent,
the blocked tokens will be returned to the user’s account.

7.3 Selecting Validators of the Rarimo Core

The RMO token is designed to ensure Rarimo security. The smart contract mandates a minimum
amount of RMO to be sent along with the transaction to be valid. Once a node has staked a certain
amount of RMO, other token holders can also stake their tokens for that node. The nodes with
the most tokens staked become the guarantors of the protocol, resulting in an inclusive process.
Users can report it through an on-chain transaction if a validator violates the protocol. Other
users can then report the violation. The validator’s stake will be transferred to the community
pool if the violation is approved. Two types of violations result in up to 100% stake penalty:
signing two or more blocks of the same height and attempting to add conflicting transactions
within one block. This ensures that bad actors will be penalized and that validators will act
together to ensure the protocol’s security.

7.4 Rewards for Signers for Fetching and Confirming External Data

Another primary utility of the RMO token is to reward data transfer from connected networks
to the Rarimo core. In this context, the degree of decentralization within the Oracle layer is
significantly important. By distinguishing this role from the validator node, technically and
economically, it enables participants to choose accounting systems that align with their existing
infrastructure and assumptions for indexing.

References

[Buc16] Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains.
https://knowen-production.s3.amazonaws.com/uploads/attachment/
file/1814/Buchman_Ethan_201606_Msater%2Bthesis.pdf, 2016. [Online;
accessed 2-Apr-2024].

15

https://knowen-production.s3.amazonaws.com/uploads/attachment/file/1814/Buchman_Ethan_201606_Msater%2Bthesis.pdf
https://knowen-production.s3.amazonaws.com/uploads/attachment/file/1814/Buchman_Ethan_201606_Msater%2Bthesis.pdf

Rarimo. User-owned social protocol WHITEPAPER

[GG20] Rosario Gennaro and Steven Goldfeder. One Round Threshold ECDSA with Iden-
tifiable Abort. https://eprint.iacr.org/2020/540, 2020. [Online; accessed
2-Apr-2024].

[Ide] Iden3. Iden3 Protocol Specifications. https://docs.iden3.io/protocol/spec/.
[Online; accessed 2-Apr-2024].

[MBS23] Alessio Meneghetti Michele Battagliola, Riccardo Longo and Massimiliano Sala. A
Provably-Unforgeable Threshold EdDSA with an Offline Recovery Party. https:
//arxiv.org/abs/2009.01631, 2023. [Online; accessed 2-Apr-2024].

Disclaimer
The content of this document is for informational purposes only, you should not construe any such information or other material as legal,
tax, investment, financial, or other advice. Nothing contained in this document constitutes a solicitation, recommendation, endorsement,
or offer of any person to buy or sell any financial instruments in any jurisdiction.

All content of this document is information of a general nature and does not address the circumstances of any particular individual or
entity. Nothing in the content of this document constitutes professional or financial advice or both, nor does any information in the content
of this document constitute a comprehensive or complete statement of the matters discussed or the law relating thereto. You alone assume
the sole responsibility of evaluating the merits and risks associated with the access or use, or both, of the content of this document or
the described in this documents project (the “Project”), or both, before making any decisions based on the information contained in the
content of this document.

When interacting with this document or the Project, or both, in any way, you acknowledge and agree that:

• you understand and accept that blockchain networks, the smart contract system concept, the underlying software application
and software platform (such as the Ethereum blockchain) is still in an early development stage and unproven, why there is no
warranty that the process for creating the Project, will be uninterrupted or error-free and why there is an inherent risk that the
software could contain weaknesses, vulnerabilities or bugs;

• you understand and accept that the blockchain technology allows new forms of interaction and that it is possible that certain
jurisdictions will apply existing regulations on, or introduce new regulations addressing, blockchain technology based
applications, which may be contrary to the current setup of the blockchain network and smart contract system and which may,
inter alia, result in substantial modifications of the smart contract system or the Project, or both, including its termination;

• you understand and accept that the creation of any tokens and the development of the Project may be abandoned for a number
of reasons, including lack of interest from the public, lack of funding, lack of commercial success or prospects (e.g. caused
by competing projects);

• you understand and accept that the Project may give rise to other, alternative to such projects;

• you understand and accept that the blockchain network, smart contract system concept, the underlying software application
and software platform (e.g. the Ethereum blockchain) may be exposed to attacks by hackers or other persons, impacting the
ability to develop the Project;

• you have a deep understanding of the functionality, usage, storage, transmission mechanisms and intricacies associated with
digital assets, and blockchain-based software systems;

• you understand and accept that the token of the Project (RMO) described herein is a cryptographic utility token. The
purpose of such a token is to enable usage and facilitate the participation and interaction with the Project, as described in this
document, for governance, and as service fee in relation to relevant activities on the protocol associated with the Project, as
well as other usage as described herein;

• you understand and accept that ownership of the RMO token carries no rights, whether express or implied, other than as
described in this document, if and to the extent the Project has been successfully completed and launched;

• you understand and accept that by receiving of the RMO token herein no form of partnership, joint venture or any similar
relationship between you and any person is created;

• you understand and accept that except as otherwise expressly set forth herein, the receipt of the RMO token: (i) does not
provide you with rights of any form with respect to any one or more of the following: any person or its revenues or assets,
including, without limitation, any voting, distribution, redemption, liquidation, proprietary (including all forms of their
intellectual property rights) or other financial or legal rights; (ii) is not a loan to any person; and (iii) does not provide you
with any ownership, equity, or other interest in any person; and

• you understand and accept that: (i) the RMO token does not represent or confer on you any ownership right, shareholding,
participation, right, title, or interest of any form with respect to any person, or any of its revenues or assets, including without
limitation any right to receive future revenue, dividends, shares, ownership right or stake, share or security, any voting,
distribution, redemption, liquidation, proprietary (including all forms of intellectual property), or other financial or legal
rights or equivalent rights, or intellectual property rights or any other form of participation in or relating to the Project; (ii) is
not intended to be a representation of currency or money (whether fiat or virtual or any form of electronic money), security,
commodity, or any other kind of financial instrument or investment; (iii) is not intended to represent any rights under a
contract for differences or under any other contract the purpose or pretended purpose of which is to secure a profit or avoid
a loss; (iv) is not a loan and is not intended to represent a debt owed by any person, and there shall be no expectation of
profit or interest income arising in connection therewith; (v) is not any form of financial derivative; (vi) is not any form of
commercial paper or negotiable instrument, and (vii) is not any commodity or asset that any person is obliged to redeem or
purchase, or both.

16

https://eprint.iacr.org/2020/540
https://docs.iden3.io/protocol/spec/
https://arxiv.org/abs/2009.01631
https://arxiv.org/abs/2009.01631

	Introduction
	Problem Statement
	Preliminaries
	Hashing Functions
	Binary Tree
	Zero-knowledge Proof
	Certificates and Signatures

	Rarimo Core
	Roles and Actors
	Quorum-driven State of Rarimo Core
	Cross-chain Messaging Protocol

	Social Protocol
	Verifiable Credentials Infrastructure
	Passport-derived Profiles
	Creating a Profile in the Rarimo Ecosystem
	Profile Revocation
	Reissuance
	Auth Proof with Selected Data Disclosure

	Private Social Graph
	Identity Profile Liveness
	Attestations
	Rate Limiting Trees
	Challenges

	Utilities of the Token
	Fees
	Governance
	Selecting Validators of the Rarimo Core
	Rewards for Signers for Fetching and Confirming External Data

