
Rarimo - Solidity
Bridge

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: December 12th, 2022 - December 16th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) SELFDESTRUCT DEPRECATION - MEDIUM 14

Description 14

Code Location 14

Risk Level 14

Recommendation 15

Reference 15

Remediation Plan 15

3.2 (HAL-02) BUNDLE IMPLEMENTATION IS PRONE TO DOS - MEDIUM 16

Description 16

Code Location 16

Proof Of Concept 17

Risk Level 17

Recommendation 17

Remediation Plan 17

1

3.3 (HAL-03) REMAINING TOKENS ARE NOT RECOVERED AFTER BUNDLE DE-

STRUCTION - MEDIUM 18

Description 18

Code Location 18

Proof Of Concept 19

Risk Level 19

Recommendation 19

Remediation Plan 19

3.4 (HAL-04) LACK OF RE-ENTRANCY PROTECTION - LOW 21

Description 21

Code Location 22

Risk Level 23

Recommendation 23

Remediation Plan 23

3.5 (HAL-05) FLOATING PRAGMA - LOW 24

Description 24

Code Location 24

Risk Level 24

Recommendation 24

Remediation Plan 24

3.6 (HAL-06) ZERO ADDRESS NOT CHECKED AFTER CREATE2 EXECUTION -

INFORMATIONAL 25

Description 25

Code Location 25

2

Risk Level 25

Recommendation 26

Remediation Plan 26

3.7 (HAL-07) USE CUSTOM ERRORS INSTEAD OF REVERT STRINGS TO SAVE

GAS - INFORMATIONAL 27

Description 27

Risk Level 27

Recommendation 27

Remediation Plan 27

3.8 (HAL-08) USE OF INLINE ASSEMBLY - INFORMATIONAL 28

Description 28

Code Location 28

Risk Level 29

Recommendation 29

Remediation Plan 29

3.9 (HAL-09) MISSING ZERO ADDRESS CHECK - INFORMATIONAL 30

Description 30

Code Location 30

Risk Level 31

Recommendation 31

Remediation Plan 31

4 AUTOMATED TESTING 32

4.1 STATIC ANALYSIS REPORT 33

Description 33

3

Results 33

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 12/13/2022 Alejandro Taibo

0.2 Document Update 12/16/2022 Alejandro Taibo

0.3 Draft Review 12/16/2022 Gabi Urrutia

1.0 Remediation Plan 12/27/2022 Alejandro Taibo

1.1 Remediation Plan Review 12/27/2022 Gokberk Gulgun

1.2 Remediation Plan Review 12/28/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Alejandro Taibo Halborn Alejandro.Taibo@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Alejandro.Taibo@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Rarimo engaged Halborn to conduct a security audit on their smart contracts

beginning on December 12th, 2022 and ending on December 16th, 2022. The

security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that were accepted and

acknowledged by the Rarimo team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

7

EX
EC

UT
IV

E
OV

ER
VI

EW

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment (Brownie, Remix IDE, Ganache, Foundry)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

CODE REPOSITORIES:

• Repository: evm-bridge

• Commit ID: 8d5efd4072e7ced93f8c3400033684115d3b91f2

• Smart contracts in scope:

- contracts/bridge/Bridge.sol

- contracts/bridge/proxy/UUPSSignableUpgradeable.sol

- contracts/bundle/Bundler.sol

- contracts/bundle/proxy/BundleExecutorImplementation.sol

- contracts/bundle/proxy/BundleExecutorProxy.sol

- contracts/handlers/ERC1155Handler.sol

- contracts/handlers/ERC20Handler.sol

- contracts/handlers/ERC721Handler.sol

- contracts/handlers/NativeHandler.sol

- contracts/interfaces/bridge/IBridge.sol

- contracts/interfaces/bundle/IBundler.sol

- contracts/interfaces/handlers/IERC1155Handler.sol

- contracts/interfaces/handlers/IERC20Handler.sol

- contracts/interfaces/handlers/IERC721Handler.sol

- contracts/interfaces/handlers/INativeHandler.sol

- contracts/interfaces/tokens/IERC1155MintableBurnable.sol

- contracts/interfaces/tokens/IERC20MintableBurnable.sol

- contracts/interfaces/tokens/IERC721MintableBurnable.sol

- contracts/libs/Encoder.sol

- contracts/tokens/ERC1155MintableBurnable.sol

- contracts/tokens/ERC20MintableBurnable.sol

- contracts/tokens/ERC721MintableBurnable.sol

- contracts/utils/Hashes.sol

- contracts/utils/Signers.sol

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://gitlab.com/rarify-protocol/evm-bridge
https://gitlab.com/rarify-protocol/evm-bridge/-/commit/8d5efd4072e7ced93f8c3400033684115d3b91f2

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 3 2 4

IM
PA
CT

LIKELIHOOD

(HAL-04) (HAL-02)

(HAL-05) (HAL-03) (HAL-01)

(HAL-06)
(HAL-07)
(HAL-08)
(HAL-09)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-01 - SELFDESTRUCT DEPRECATION Medium RISK ACCEPTED

HAL-02 - BUNDLE IMPLEMENTATION IS
PRONE TO DOS

Medium RISK ACCEPTED

HAL-03 - REMAINING TOKENS ARE NOT
RECOVERED AFTER BUNDLE DESTRUCTION

Medium RISK ACCEPTED

HAL-04 - LACK OF RE-ENTRANCY
PROTECTION

Low RISK ACCEPTED

HAL-05 - FLOATING PRAGMA Low RISK ACCEPTED

HAL-06 - ZERO ADDRESS NOT CHECKED
AFTER CREATE2 EXECUTION

Informational NOT APPLICABLE

HAL-07 - USE CUSTOM ERRORS INSTEAD
OF REVERT STRINGS TO SAVE GAS

Informational ACKNOWLEDGED

HAL-08 - USE OF INLINE ASSEMBLY Informational NOT APPLICABLE

HAL-09 - MISSING ZERO ADDRESS CHECK Informational ACKNOWLEDGED

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) SELFDESTRUCT
DEPRECATION - MEDIUM

Description:

The BundleExecutorProxy smart contract executes self-destruct opcode in

order to destruct the smart contract and sending the remaining ether back

to the bridge.

Following the recent EIP-6049, the self-destruct opcode will be depre-

cated, and hence, modifying the functionality of this opcode. Moreover,

this EIP warns against its usage.

Code Location:

Listing 1: contracts/bundle/proxy/BundleExecutorProxy.sol

17 function destroy () external {

18 address bridge_ = _BRIDGE;

19

20 assembly {

21 if iszero(eq(caller (), bridge_)) {

22 revert(0, 0)

23 }

24

25 selfdestruct(caller ())

26 }

27 }

Risk Level:

Likelihood - 4

Impact - 3

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to stop using this opcode in order to avoid broken

functionalities in the future.

Reference:

EIP-6049: Deprecate SELFDESTRUCT

Remediation Plan:

RISK ACCEPTED: The Rarimo team accepted the risk of this finding. The

Rarimo team stated:

“We are aware of this and it only warns against the usage. In the

backward compatibility” section, the EIP clearly (rather poorly) states,

this EIP updates non-normative text in the Yellow Paper. No changes to

clients is applicable."

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://eips.ethereum.org/EIPS/eip-6049

3.2 (HAL-02) BUNDLE IMPLEMENTATION
IS PRONE TO DOS - MEDIUM

Description:

The BundleExecutorImplementation smart contract performs several external

calls in a loop, this pattern adds an extra dependency for a successful

execution of the transaction, since each external call should not revert

or consume the remaining gas.

This condition might lead to a denial-of-service (DOS) attacks, since a

malicious smart contract could revert the transaction after executing a

revert or draining the remaining gas.

In this case, this issue does not pose a high risk since the Bridge smart

contract is using a try-catch statement to avoid blocking the assets

transferred in the transaction, but a DOS attack would block executing

the rest of the actions specified in a bundle.

Code Location:

Listing 2: contracts/bundle/proxy/BundleExecutorImplementation.sol

(Line 14)

14 for (uint256 i = 0; i < contracts_.length; i++) {

15 (bool success_ ,) = payable(contracts_[i]).call{value: values_

ë [i]}(data_[i]);

16

17 require(success_ , "BundleExecutorImplementation: call reverted

ë ");

18 }

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof Of Concept:

Listing 3

1 function testDOS () {

2 bundleExecutorImplementation.execute(anyBundleData);

3 }

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

If possible, it is highly recommended to use pull over push strategies

for these situations.

Remediation Plan:

RISK ACCEPTED: The Rarimo team accepted the risk of this finding. The

Rarimo team stated:

"The bundle workflow is intended. The DOS might only affect the funds of

the exact user who executed this bundle, yet this user would be the one

who created the bundle as well. Basically, it is on the user’s shoulders

(and front end) to correctly assemble the bundle.

Moreover, the try-catch logic will remedy the situation in the case of

user errors or dedicated DOS."

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) REMAINING TOKENS ARE
NOT RECOVERED AFTER BUNDLE
DESTRUCTION - MEDIUM

Description:

The BundleExecutorProxy smart contract oversees making delegate calls to

the BundleExecutorImplementation smart contract. After a successful exe-

cution, BundleExecutorProxy smart contract is destroyed by the execution

of its destroy function, transferring back its balance of ether to the

bridge by executing selfdestruct.

Therefore, if a bundle aiming to transfer tokens such as ERC20, ERC721 or

ERC1155 does not transfer all the specified tokens in the bundle, these

remaining tokens would keep associated to the destroyed account instead

of getting transferred to the bridge since selfdestruct function only

transfer ether.

Code Location:

Listing 4: contracts/bundle/Bundler.sol (Line 32)

23 function _bundleUp(Bundle calldata bundle_) internal {

24 address payable executor = payable(

25 new BundleExecutorProxy{salt: bundle_.salt}(

26 bundleExecutorImplementation ,

27 address(this)

28)

29);

30

31 BundleExecutorImplementation(executor).execute(bundle_.bundle)

ë ;

32 BundleExecutorProxy(executor).destroy ();

33 }

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 5: contracts/bundle/proxy/BundleExecutorProxy.sol

17 function destroy () external {

18 address bridge_ = _BRIDGE;

19

20 assembly {

21 if iszero(eq(caller (), bridge_)) {

22 revert(0, 0)

23 }

24

25 selfdestruct(caller ())

26 }

27 }

Proof Of Concept:

Listing 6

1 function testRemainingFunds () {

2 bundleExecutor.destroy ();

3 }

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended to verify whether the deployed smart contract has

tokens associated to transfer them back to the bridge before destroying

the contract.

Remediation Plan:

RISK ACCEPTED: The Rarimo team accepted the risk of this finding. The

Rarimo team stated:

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

"The described logic is also expected. We would have left the native

tokens on the same proxy address, however, selfdestruct(payable(address

(this))) basically burns ether, so we are sending it back to the bridge.

This approach is safe because the proxy address gets determined with

tx.origin salt, so no one would be able to steal not their own funds.

The checks for 0 tokens withdrawals will be discarded to simplify the

process of proxy recreation."

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) LACK OF RE-ENTRANCY
PROTECTION - LOW

Description:

The NativeHandler, ERC721Handler, ERC1155Handler and BundleExecutorImplementation

smart contracts perform several arbitrary external calls without caring

about recursive calls to its functions.

It is known that calling external contracts is dangerous if some functions

and variables are called after the external call. An attacker could use

a malicious contract to perform recursive calls, taking over the control

flow.

In the case of BundleExecutorImplementation smart contract, executing

recursive calls to execute function would drain the smart contract’s

balance but, at the same time, it would also mean reverting the transaction

since the rest of the external calls in the loop should use the drained

ether by specifying it as value argument.

By the other hand, in NativeHandler, ERC721Handler and ERC1155Handler

smart contracts, an attacker would require of a valid signature to

perform recursive calls to withdraw functions since after every execution

the originHash is blacklisted avoiding more than one usage.

Therefore, despite not posing a risk to scoped smart contracts, it is worth

to avoid this code patterns since they could be dangerous and implement

countermeasures such as locks/mutex in order to avoid unintended recursive

calls to smart contract’s functions.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 7: contracts/bundle/proxy/BundleExecutorImplementation.sol

(Line 15)

14 for (uint256 i = 0; i < contracts_.length; i++) {

15 (bool success_ ,) = payable(contracts_[i]).call{value: values_

ë [i]}(data_[i]);

16

17 require(success_ , "BundleExecutorImplementation: call reverted

ë ");

18 }

Listing 8: contracts/handlers/NativeHandler.sol (Line 48)

42 function _withdrawNative(bytes calldata tokenData_ , address

ë receiver_ , bool) internal {

43 uint256 amount_ = _decodeNativeTokenData(tokenData_);

44

45 require(amount_ > 0, "NativeHandler: amount is zero");

46 require(receiver_ != address (0), "NativeHandler: receiver is

ë zero");

47

48 (bool success_ ,) = payable(receiver_).call{value: amount_ }(""

ë);

49

50 require(success_ , "NativeHandler: failed to send eth");

51 }

Listing 9: contracts/handlers/ERC721Handler.sol (Line 71)

66 IERC721MintableBurnable erc721_ = IERC721MintableBurnable(token_);

67

68 if (isWrapped_) {

69 erc721_.mintTo(receiver_ , tokenId_ , tokenURI_);

70 } else {

71 erc721_.safeTransferFrom(address(this), receiver_ , tokenId_);

72 }

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 10: contracts/handlers/ERC1155Handler.sol (Line 78)

73 IERC1155MintableBurnable erc1155_ = IERC1155MintableBurnable(

ë token_);

74

75 if (isWrapped_) {

76 erc1155_.mintTo(receiver_ , tokenId_ , amount_ , tokenURI_);

77 } else {

78 erc1155_.safeTransferFrom(address(this), receiver_ , tokenId_ ,

ë amount_ , "");

79 }

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

It is recommended to protect against reentrancy attacks by using a mutex

mechanism as mentioned above. OpenZeppelin has its own mutex implemen-

tation called ReentrancyGuard which provides a modifier to any function

called nonReentrant that guards the function with a mutex against the

recursive calls.

Remediation Plan:

RISK ACCEPTED: The Rarimo team accepted the risk of this finding. The

Rarimo team stated:

“The code is indeed re-entrant, however, there are no benefits for the

attacker to actually execute the . would just increase the execution

cost.”

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) FLOATING PRAGMA - LOW

Description:

Smart contracts use the floating pragma ˆ0.8.9. Contracts should be

deployed with the same compiler version and flags that they have been

tested with thoroughly. Locking the pragma helps to ensure that contracts

do not accidentally get deployed using, for example, either an outdated

compiler version that might introduce bugs that affect the contract system

negatively or a pragma version too new which has not been extensively

tested.

Code Location:

Listing 11: contracts/*

2 pragma solidity ^0.8.9;

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Consider locking the pragma version with known bugs for the compiler

version by removing the caret (^) symbol. When possible, do not use

floating pragma in the final live deployment. Specifying a fixed compiler

version ensures that the bytecode produced does not vary between builds.

This is especially important if you rely on bytecode-level verification

of the code.

Remediation Plan:

RISK ACCEPTED : The Rarimo team accepted the risk of this finding

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) ZERO ADDRESS NOT
CHECKED AFTER CREATE2 EXECUTION -
INFORMATIONAL

Description:

The Bundler smart contracts make use of CREATE2 opcode to deploy a proxy

smart contract in a pre-computable address by specifying the salt argument

during the deployment.

This opcode can return zero address whether an error occurs during the

construction of the smart contract or a smart contract has been already

deployed in the pre-computed address. In the latter case, the same salt

and deployment bytecode should be used.

Code Location:

Listing 12: contracts/bundle/Bundler.sol (Lines 22-24)

20 function _bundleUp(Bundle calldata bundle_) internal {

21 address payable executor = payable(

22 new BundleExecutorProxy{salt: bundle_.salt}(

23 bundleExecutorImplementation ,

24 address(this)

25)

26);

27

28 BundleExecutorImplementation(executor).execute(bundle_.

ë bundle);

29 BundleExecutorProxy(executor).destroy ();

30 }

Risk Level:

Likelihood - 1

Impact - 1

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to verify whether CREATE2 has been executed successfully

by checking if the returned value is different from the zero address.

Remediation Plan:

NOT APPLICABLE: The Rarimo team stated that this issue is not applicable,

since the high-level solidity salted creation reverts in case of failure.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) USE CUSTOM ERRORS
INSTEAD OF REVERT STRINGS TO SAVE
GAS - INFORMATIONAL

Description:

Failed operations in this contract are reverted with an accompanying

message selected from a set of hardcoded strings.

In the EVM, emitting a hardcoded string in an error message costs ~50

more gas than emitting a custom error. Additionally, hardcoded strings

increase the gas required to deploy the contract.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Custom errors are available from Solidity version 0.8.4 up. Consider

replacing all revert strings with custom errors.

Remediation Plan:

ACKNOWLEDGED : The Rarimo team acknowledged this issue. The Rarimo team

will consider using custom errors in the future.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) USE OF INLINE
ASSEMBLY - INFORMATIONAL

Description:

Inline assembly is a way to access the Ethereum Virtual Machine at a

low level. This discards several important safety features of Solidity,

and the static compiler. Since the EVM is a stack machine, it is often

hard to address the correct stack slot and provide arguments to opcodes

at the correct point on the stack. Solidity’s inline assembly tries to

facilitate that and other issues arising when writing manual assembly.

Assembly is much more difficult to write because the compiler does not

perform checks, so the developer of the contract should be aware of this

warning.

Code Location:

Listing 13: contracts/bundle/proxy/BundleExecutorProxy.sol

20 assembly {

21 if iszero(eq(caller (), bridge_)) {

22 revert(0, 0)

23 }

24

25 selfdestruct(caller ())

26 }

Listing 14: contracts/bundle/proxy/BundleExecutorProxy.sol

30 assembly {

31 calldatacopy (0, 0, calldatasize ())

32

33 let result_ := delegatecall(gas(), implementation_ , 0,

ë calldatasize (), 0, 0)

34

35 returndatacopy (0, 0, returndatasize ())

36

37 switch result_

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

38 case 0 {

39 revert(0, returndatasize ())

40 }

41 default {

42 return(0, returndatasize ())

43 }

44 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

The contracts should avoid using inline assembly because it interacts

with the EVM (Ethereum Virtual Machine) at a low level. An attacker

could bypass many essential safety features of Solidity.

Remediation Plan:

NOT APPLICABLE : The Rarimo team acknowledged this issue. The Rarimo team

considers this issue as an intended.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) MISSING ZERO ADDRESS
CHECK - INFORMATIONAL

Description:

The Bridge smart contract is missing the zero address validation in crit-

ical setters such as changeSigner and changeBundleExecutorImplementation

functions. It is possible to configure signer and bundleExecutorImplementation

fields to point to the zero address, which may cause issues with

contract execution.

Code Location:

Listing 15: contracts/bridge/Bridge.sol

195 function changeSigner(address newSigner_ , bytes memory signature_)

ë external {

196 _checkSignatureAndIncrementNonce(_getAddressChangeHash(

ë newSigner_), signature_);

197

198 signer = newSigner_;

199 }

Listing 16: contracts/bridge/Bridge.sol

201 function changeBundleExecutorImplementation(

202 address newImplementation_ ,

203 bytes memory signature_

204) external {

205 _checkSignatureAndIncrementNonce(_getAddressChangeHash(

ë newImplementation_), signature_);

206

207 bundleExecutorImplementation = newImplementation_;

208 }

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider adding a check to ensure signer and bundleExecutorImplementation

addresses are different from the zero address.

Remediation Plan:

ACKNOWLEDGED : The Rarimo team acknowledged this issue. The Rarimo team

will fix the issue in the future.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

32

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them

correctly into their ABIs and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Results:

33

AU
TO

MA
TE

D
TE

ST
IN

G

• All the re-entrancy issues were checked individually, and those not

described above in the report do not pose any risk.

• Contract locking ether issue is a false positive since this smart

contract is destroyed after its execution.

• No major issues found by Slither.

34

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Code Location
	Proof Of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof Of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

